Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于BP神經網絡的新型電力諧波檢測方法

來源:電工電氣發(fā)布時間:2016-11-17 15:17 瀏覽次數:14
基于BP神經網絡的新型電力諧波檢測方法
 
崔小白
(東南大學 電氣工程學院,江蘇 南京 210096)
 
    摘 要:為了滿足電能質量在實時檢測、動態(tài)響應和精確跟蹤等方面對諧波檢測方法的要求,利用神經網絡可以快速充分逼近任意非線性的特點,通過設計訓練樣本,優(yōu)化系統(tǒng)參數,給出了一種基于BP 神經網絡的新型諧波檢測技術。運用Matlab/Simulink 軟件構建仿真模型,對信號處理過程和結果進行了顯示,驗證了該方法的可行性及優(yōu)越性。
    關鍵詞:諧波電流檢測;BP 神經網絡;有源電力濾波器;Matlab/Simulink 軟件
    中圖分類號:TM714.3     文獻標識碼:A     文章編號:1007-3175(2016)11-0011-05
 
New Type of Power Harmonic Detection Method Based on
Back-Propagation Neural Network
 
CUI Xiao-bai
(School of Electrical Engineering, Southeast University, Nanjing 210096, China)
 
    Abstract: To meet the requirements of power quality in the aspects of real-time detection, dynamic response and precise tracking for harmonic
detection, this paper used the characteristics that the neutral network could quickly and fully approached to any nonlinear to optimize system parameters by the design of training samples. This paper gave a kind of new type of harmonic detection technique. Simulink in Matlab software was used to build the simulation model to display the signal treating process and results, which verifies the feasibility and superiority of the method.
    Key words: harmonic current detection; back-propagation neutral network; active power filter; Matlab/Simulink software
 
參考文獻
[1] 王兆安,楊君,劉進軍. 諧波抑制和無功功率補償[M]. 北京:機械工業(yè)出版社,2005.
[2] 胡志坤,姜斌,李哲彬,等. 三相有源電力濾波器滑模解耦控制方法研究[J]. 電機與控制學報,2014,18(9):87-92.
[3] CHEN Z, XU D.Control and design issues of a DSP-based shunt active power filter for utility interface of diode rectifiers[C]// Applied Power Electronics Conference and Exposition, Anaheim, CA, USA,2004:197-204.
[4] JINTAKOSONUIT P, FUJITA H, AKAGI H.Control and performance of a fully-digital-controlled shunt active filter for installation on a power distribution system[J]. IEEE Transactions on Power Electronics,2002,17(1):132-140.
[5] 阮羚,謝齊家,高勝友,等. 人工神經網絡和信息融合技術在變壓器狀態(tài)評估中的應用[J]. 高電壓技術,2014,40(3):822-828.
[6] 李虎.BP算法的改進及其在PID 優(yōu)化控制中的應用研究[D]. 西安:西安科技大學,2012.
[7] 蔣金山,何春雄,潘少華. 最優(yōu)化計算方法[M].廣州:華南理工大學出版社,2008.
[8] 楊建國,楊曉義,周虎. 神經網絡補償器在基于影像測量儀的運動控制系統(tǒng)中的應用[J]. 東華大學學報( 自然科學版),2011,37(1):86-89.
[9] 馬草原,孫富華,朱蓓蓓,等. 神經網絡算法的改進及其在有源電力濾波器中的應用[J]. 電力系統(tǒng)保護與控制,2015,43(24):142-148.
[10] 王好娜,畢志周,付志紅,等. 基于BP神經網絡和線性神經網絡的間諧波分析方法[J]. 高壓電器,2013,49(2):19-24.
[11] 王凱亮,曾江,王克英. 一種基于BP神經網絡的諧波檢測方案[J]. 電力系統(tǒng)保護與控制,2013,41(17):44-48.