Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

數(shù)據(jù)挖掘技術(shù)及其在電力系統(tǒng)中的應(yīng)用

來源:電工電氣發(fā)布時(shí)間:2016-06-25 16:25 瀏覽次數(shù):7
數(shù)據(jù)挖掘技術(shù)及其在電力系統(tǒng)中的應(yīng)用
 
吳奇珂,程帆
(東南大學(xué) 電氣工程學(xué)院,江蘇 南京 210096)
 
    摘 要:電力大數(shù)據(jù)下的數(shù)據(jù)挖掘技術(shù)應(yīng)用貫穿于發(fā)、輸、變、配、用各個(gè)環(huán)節(jié),介紹了分類分析、關(guān)聯(lián)分析、聚類分析和異常檢測(cè)等智能算法在輸電系統(tǒng)雷電預(yù)測(cè)、設(shè)備運(yùn)行狀態(tài)分析、配電系統(tǒng)運(yùn)行故障預(yù)警及風(fēng)險(xiǎn)預(yù)測(cè)、用戶用電行為特性聚類、電力市場(chǎng)行為分析、電力市場(chǎng)中負(fù)荷及電價(jià)預(yù)測(cè)等的應(yīng)用。數(shù)據(jù)挖掘技術(shù)可顯著提升電網(wǎng)運(yùn)行效益,是未來智能電網(wǎng)發(fā)展的核心技術(shù)之一。
    關(guān)鍵詞:數(shù)據(jù)挖掘;輸電系統(tǒng);配電系統(tǒng);用電互動(dòng);電力市場(chǎng)
    中圖分類號(hào):TM715     文獻(xiàn)標(biāo)識(shí)碼:B     文章編號(hào):1007-3175(2016)06-0028-05
 
Data Mining Technology and Its Application in Power System
 
WU Qi-ke, CHENG Fan
(School of Electrical Engineering, Southeast University, Nanjing 210096, China)
 
    Abstract: Under the conditions of big data in power industry, the application of data mining technology ran through each link of deliver, transmission, transfer, distribution and usage. Introduction was made to the application of classification analysis, correlation analysis, clustering analysis and anomaly detection etc intelligent algorithms in thunder and lightning prediction of power transmission system, analysis of equipment operational condition, fault early warning and risk profile of power distribution system, user electro-behavioral characteristic clustering, electricity market behavioural analysis, load and electricity price prediction in electricity market and so on. The data mining technology could improve effectiveness in power grid remarkably and it is one of the core technologies for future intelligent power grids.
    Key words: data mining; power transmission system; power distribution system; interaction with power; electricity market
 
參考文獻(xiàn)
[1] 鐘曉,馬少平,張鈸,俞瑞釗. 數(shù)據(jù)挖掘綜述[J].模式識(shí)別與人工智能,2001,14(1):48-55.
[2] 張引,陳敏,廖小飛. 大數(shù)據(jù)應(yīng)用的現(xiàn)狀與展望[J].計(jì)算機(jī)研究與發(fā)展,2013,50(S2):216-233.
[3] 張東霞,苗新,劉麗平, 張焰,劉科研. 智能電網(wǎng)大數(shù)據(jù)技術(shù)發(fā)展研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2015,35(1):2-12.
[4] 俞立婷,何俊佳,陳家宏. 輸電線路雷電活動(dòng)時(shí)空分布特征的數(shù)據(jù)挖掘[J]. 高電壓技術(shù),2008,34(2):314-318.
[5] 陳維榮,宋永華,孫錦鑫. 電力系統(tǒng)設(shè)備狀態(tài)監(jiān)測(cè)的概念及現(xiàn)狀[J]. 電網(wǎng)技術(shù),2000,24(11):12-17.
[6] 張連育. 基于數(shù)據(jù)挖掘的電力故障分析及預(yù)警系統(tǒng)研究與實(shí)現(xiàn)[D]. 北京:中國(guó)科學(xué)院研究生院( 沈陽(yáng)計(jì)算技術(shù)研究所),2010.
[7] 趙云山,劉煥煥. 大數(shù)據(jù)技術(shù)在電力行業(yè)的應(yīng)用研究[J]. 電信科學(xué),2014,30(1):57-62.
[8] 張東霞,王繼業(yè),劉科研,鄭安剛. 大數(shù)據(jù)技術(shù)在配用電系統(tǒng)的應(yīng)用[J]. 供用電,2015,32(8):6-11.
[9] 向保林. 數(shù)據(jù)挖掘技術(shù)在電力市場(chǎng)中的運(yùn)用[J].武漢電力職業(yè)技術(shù)學(xué)院學(xué)報(bào),2005,3(1):30-33.
[10] 李冬偉. 基于數(shù)據(jù)挖掘的電力系統(tǒng)短期負(fù)荷預(yù)測(cè)研究[D]. 大連:大連理工大學(xué),2007.
[11] 袁貴川. 基于數(shù)據(jù)挖掘技術(shù)和加權(quán)回歸技術(shù)的電價(jià)預(yù)測(cè)[D]. 杭州:浙江大學(xué),2003.