基于概率潮流的機(jī)會約束規(guī)劃方法及求解
管永麗
(東南大學(xué) 電氣工程學(xué)院,江蘇 南京 210096)
摘 要: 為了解決傳統(tǒng)的輸電系統(tǒng)面對發(fā)電、輸電以及負(fù)荷的不確定因素的增加無法提出可靠的規(guī)劃方案的問題,提出了基于概率潮流的機(jī)會約束規(guī)劃方法,綜合考慮節(jié)點負(fù)荷值、發(fā)電機(jī)出力等不確定性因素,是一類隨機(jī)優(yōu)化方法。給出了基于蒙特卡洛仿真的驗證方法和基于遺傳算法的求解方法,并以一個簡單算例驗證了該方法的可行性。
關(guān)鍵詞: 遺傳算法;概率潮流;分布式電源;機(jī)會約束規(guī)劃;半不變量法
中圖分類號:TM715 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-3175(2016)01-0017-04
Chance-Constrained Programming Methods Based on Probabilistic Load Flow
GUAN Yong-li
(School of Electrical Engineering, Southeast University, Nanjing 210096, China)
Abstract: In order to solve the problem that for the traditional power transmission system, it isn’t able to give reliable planning schemes to face the increase of uncertainties such as power generation, power transmission and load. This paper proposed a chance-constrained programming method based on probabilistic load flow, in overall consideration of uncertainty factors such as node load values, the generator output. This is a kind of stochastic optimization method. This paper gave the verification method based on Monte Carlo simulation and the solving method based on genetic algorithm. A simple numerical example illustrates the feasibility of this method.
Key words: genetic algorithm; probabilistic load flow; distributed power; chance-constrained programming; half invariant method
參考文獻(xiàn)
[1] 楊寧,文福拴. 基于機(jī)會約束規(guī)劃的輸電系統(tǒng)規(guī)劃方法[J]. 電力系統(tǒng)自動化,2004,28(14):27-31.
[2] 胡澤春,王錫凡. 基于半不變量法的隨機(jī)潮流誤差分析[J]. 電網(wǎng)技術(shù),2009,33(18):38-43.
[3] 于晗,鐘志勇,黃杰波,張建華. 考慮負(fù)荷和風(fēng)電出力不確定性的輸電系統(tǒng)機(jī)會約束規(guī)劃[J]. 電力系統(tǒng)自動化,2009,33(2):24-28.
[4] 倪金林. 遺傳算法求解約束非線性規(guī)劃及Matlab實現(xiàn)[J]. 大學(xué)數(shù)學(xué),2005,21(1):91-95.
[5] 姜淼,高賜威,蘇衛(wèi)華. 含分布式能源的配電網(wǎng)規(guī)劃綜述[J]. 華東電力,2014,42(5):62-69.
[6] 張節(jié)潭,程浩忠,姚良忠. 分布式風(fēng)電源選址定容規(guī)劃研究[J]. 中國電機(jī)工程學(xué)報,2009,29(16):1-7.
[7] 范宏,張藝,金義雄. 基于半不變量法的隨機(jī)潮流計算模型及方法[J]. 上海電力學(xué)院學(xué)報,2012,9(4):313-316.