應(yīng)用于智能電網(wǎng)故障檢測(cè)的關(guān)聯(lián)規(guī)則挖掘算法優(yōu)化
朱文灝1,2,郭其一1
(1 同濟(jì)大學(xué) 電子與信息工程學(xué)院,上海 201804;
2 上海施耐德低壓終端電器有限公司,上海 201109)
摘 要: 針對(duì)于目前故障檢測(cè)方法在智能電網(wǎng)應(yīng)用中存在較大誤差的問題,介紹了一種基于貝葉斯網(wǎng)絡(luò)和關(guān)聯(lián)規(guī)則數(shù)據(jù)挖掘的算法模型,通過Hash 技術(shù)優(yōu)化Apriori 算法,對(duì)原數(shù)據(jù)挖掘,去除不期望的候選項(xiàng)集,并通過貝葉斯網(wǎng)絡(luò)訓(xùn)練樣本,減少檢測(cè)誤差,最終得到電網(wǎng)故障檢測(cè)結(jié)果。仿真結(jié)果表明,這種基于貝葉斯網(wǎng)絡(luò)和關(guān)聯(lián)規(guī)則挖掘算法的故障檢測(cè)模型,比傳統(tǒng)算法在電網(wǎng)故障檢測(cè)方面更有效率,且檢測(cè)誤差大幅降低。
關(guān)鍵詞: 智能電網(wǎng)故障檢測(cè);關(guān)聯(lián)規(guī)則挖掘;頻繁項(xiàng)集優(yōu)化;貝葉斯網(wǎng)絡(luò)
中圖分類號(hào):TM743 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2015)03-0004-04
Optimization of Association Rules Mining Algorithm for Smart Grid Fault Detection
ZHU Wen-hao1,2, GUO Qi-yi1
(1 Department of Electrical Engineering, Tongji University, Shanghai 201804, China;
2 Schneider Shanghai Low Voltage Terminal Apparatus Co., Ltd, Shanghai 2011 09, China)
Abstract: Aiming at the problem that larger error always exists during the application of fault detection test method in smart grid, this paper introduced an algorithm model based on Bayesian network and association rule mining. With mining the original data and removing the undesired candidate, Apriori algorithm was optimized by Hash technology; also Bayesian network was introduced for sample training to decrease detection error, so as to finally obtain the result of power network fault detection. Simulation results show that compared with traditional algorithm, the proposed fault detection model, which is based on Bayesian network and association rules mining, is more efficient with lower detection error in power grid fault detection.
Key words: smart grid fault detection; association rules mining; frequent item set optimization; Bayesian network
參考文獻(xiàn)
[1] 杜敏杰,馬善釗,王建國,等.基于核密度估計(jì)的實(shí)時(shí)SVDD算法與電路故障檢測(cè)應(yīng)用[J].計(jì)算機(jī)測(cè)量與控制,2014,22(4):1039-1041.
[2] 張哲軍.引入推理模型的大型電網(wǎng)設(shè)備的故障檢測(cè)方法[J].科技通報(bào),2014,30(2):111-113.
[3] 周建萍,朱建萍,徐司聰.微網(wǎng)孤島運(yùn)行時(shí)短路故障檢測(cè)的仿真研究[J].中國電力,2014,47(3):85-89.
[4] 杜華.基于關(guān)聯(lián)規(guī)則的船舶供電系統(tǒng)故障檢測(cè)方法研究[J].計(jì)算機(jī)測(cè)量與控制,2014,22(1):233-235.
[5] 張咪.一種遠(yuǎn)端故障檢測(cè)方案的設(shè)計(jì)與實(shí)現(xiàn)[J].計(jì)算機(jī)技術(shù)與應(yīng)用,2013,39(12):126-128.
[6] 張海濤,高錦宏,吳國新,等. 蟻群優(yōu)化算法在風(fēng)電偏航故障檢測(cè)中的應(yīng)用[J]. 可再生能源,2013,31(11):48-50.
[7] 原艷紅.大型煤炭機(jī)電設(shè)備的故障檢測(cè)方法研究[J].計(jì)算機(jī)仿真,2013,30(8):380-383.
[8] 鄭樹松,李紅梅.電動(dòng)汽車PMSM驅(qū)動(dòng)系統(tǒng)的故障檢測(cè)[J].微電機(jī),2013,46(8):55-59.
[9] 王娟,張瑾.高壓電力計(jì)量系統(tǒng)故障診斷與應(yīng)用研究[J].科學(xué)技術(shù)與工程,2013,13(19):5617-5620.
[10] 杜敏杰,蔡金燕. 基于樣本約簡的實(shí)時(shí)SVDD 算法與電路故障檢測(cè)應(yīng)用[J]. 微電子學(xué)與計(jì)算機(jī),2013,30(7):86-90.