參考文獻(xiàn)
[1] 梁智,孫國(guó)強(qiáng),李虎成. 基于 VMD 與 PSO 優(yōu)化深度信念網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)[J] . 電網(wǎng)技術(shù),2018,42(2):598-606.
[2] KIN J, CHO S, KO K, et al.Short-Term Electric Load Prediction Using Multiple Linear Regression Method[C]//2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids,2018.
[3] LI Hong, ZHAO Yang, ZHANG Zizi, et al.Shortterm load forecasting based on the grid method and the time series fuzzy load forecasting method[C]//International Conference on Renewable Power Generation,2015.
[4] 陳磊,張青云,向曉,等. 改進(jìn)灰色預(yù)測(cè)模型在電力負(fù)荷預(yù)測(cè)中的應(yīng)用[J] . 河北電力技術(shù),2021,40(6):27-30.
[5] SHARMA S, MAJUMDAR A, ELVIRA V, et al.Blind Kalman Filtering for Short-Term Load Forecasting[J].IEEE Transactions on Power Systems,2020,35(6):4916-4919.
[6] 譚風(fēng)雷,張軍,馬宏忠. 基于趨勢(shì)變化分段的電力負(fù)荷組合預(yù)測(cè)方法[J] . 華北電力大學(xué)學(xué)報(bào),2020,47(2):17-24.
[7] YANG Wangwang, SHI Jing, LI Shujian, et al.A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior[J].Applied Energy,2022,307(C) :S0306261921014665.
[8] JALALI S M J, AHMADIAN S, KHOSRAVI A, et al.A Novel Evolutionary-Based Deep Convolutional Neural Network Model for Intelligent Load Forecasting[J].IEEE Transactions on Industrial Informatics,2021,PP(99) :1.
[9] ZHU Fuyun, WU Guoqing.Load Forecasting of the Power System: An Investigation Based on the Method of Random Forest Regression[J].Energy Engineering,2021,118(6) :1703-1712.
[10] LI Gen, LI Yunhua, ROOZITALAB Farzad.Midterm Load Forecasting: A Multistep Approach Based on Phase Space Reconstruction and Support Vector Machine[J].IEEE Systems Journal,2020,14(4) :4967-4977.
[11] 鄧春紅,王蒙. 基于相似日和灰色理論的短期電力負(fù)荷預(yù)測(cè)研究[J] . 重慶工商大學(xué)學(xué)報(bào)( 自然科學(xué)版),2017,34(3):93-97.
[12] 王瑞,孫憶楓,逯靜. 基于相似日和 RBF 神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測(cè)[J] . 制造業(yè)自動(dòng)化,2021,43(4):24-29.
[13] JANKOVI Z, SELAKOV A, BEKUT D, et al.Day similarity metric model for short-term load forecasting supported by PSO and artificial neural network[J].Electrical Engineering,2021,103(1) :2973-2988.
[14] DING Jianmin, YUE Yunli, CHEN Jianhua, et al.Analysis of Factors Affecting Power Load Characteristics Based on Grey Relational Analysis Model [C]//2019 International Conference on Sensing , Diagnostics ,Prognostics, and Control(SDPC),2020.
[15] 劉亞琿,趙倩. 基于聚類經(jīng)驗(yàn)?zāi)B(tài)分解的 CNN-LSTM 超短期電力負(fù)荷預(yù)測(cè)[J] . 電網(wǎng)技術(shù),2021,45(11):4444-4451.
[16] RAFI S H, MASOOD Nahid-Al, DEEBA S R, et al.A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network[J].IEEE Access,2021,9:32436-32448.
[17] 劉可真,阮俊梟,趙現(xiàn)平,等. 基于麻雀搜索優(yōu)化的 Attention-GRU 短期負(fù)荷預(yù)測(cè)方法[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2022,34(4) :99-106.