計及N -1準則的含光伏發(fā)電系統(tǒng)運行風險的評估
李從飛
(南京弘毅電氣自動化有限公司,江蘇 南京 210039)
摘 要:為了研究光伏接入對系統(tǒng)運行風險的影響,介紹了基于非參數(shù)核密度估計建立光伏電站出力概率模型的方法,在此基礎(chǔ)上引入Well-being框架,提出了考慮N -1安全準則的含光伏發(fā)電的系統(tǒng)運行風險評估算法。以IEEE RTS系統(tǒng)為例進行了算例分析,算例結(jié)果證明了基于非參數(shù)核密度估計建立光伏不確定性模型和所提出的考慮N -1安全準則的系統(tǒng)風險評估算法的正確性。
關(guān)鍵詞:光伏發(fā)電系統(tǒng);非參數(shù)核密度估計;N -1準則;Well-being框架;運行風險
中圖分類號:TM615;TM715 文獻標識碼:A 文章編號:1007-3175(2020)06-0029-05
Considering N-1 of Photovoltaic Power Generation Systems Run the Risk Assessment Criteria
LI Cong-fei
(Nanjing Hongyi Electric Automation Co., Ltd, Nanjing 210039, China)
Abstract: In order to study the impact of photovoltaic access on system operation risk, this paper introduces the method of establishing the probabilistic model of photovoltaic power plant output based on non-parametric kernel density estimation. On this basis, the Well-being framework is introduced, and the operational risk assessment algorithm of the photovoltaic power generation system considering N-1 safety criteria is proposed. Taking the IEEE RTS system as an example, a case analysis is carried out. The results of the example prove the correctness of the system risk assessment algorithm based on the non-parametric kernel density estimation to establish the photovoltaic uncertainty model and the proposed N-1 safety criterion.
Key words: photovoltaic power generation system; non-parametric kernel density estimation; N-1 criteria; Well-being framework; operational risk
參考文獻
[1] 郭一飛,高厚磊,田佳. 引入聚類分析的光伏出力建模及其在可靠性評估中的應用[J]. 電力系統(tǒng)自動化,2016,40(23):93-100.
[2] 丁明,鮑玉瑩,畢銳. 應用改進馬爾科夫鏈的光伏出力時間序列模擬[J]. 電網(wǎng)技術(shù),2016,40(2):459-464.
[3] 程思萌,朱自偉. 太陽光輻照度概率分布參數(shù)對電網(wǎng)可靠性的影響[J]. 電測與儀表,2015,52(22):36-41.
[4] 宗炫君,袁越,蔣科,等. 基于晴空指數(shù)與波動特性的光伏電站可靠性分析[J]. 電力工程技術(shù),2019,38(1):36-41.
[5] 徐乾宸,王琦,張文祺,等. 含光伏電站的電力系統(tǒng)運行風險評估[J]. 南京師范大學學報( 工程技術(shù)版),2017,17(3):7-14.
[6] 趙淵,范飛,楊金剛,等. 電網(wǎng)可靠性評估中計及加和特性的非參數(shù)解集負荷模型[J]. 中國電機工程學報,2015,35(23):6039-6047.
[7] 繆鵬彬,余娟,史樂峰,等. 基于改進非參數(shù)核密度估計和拉丁超立方抽樣的電動公共客車負荷模型[J]. 電工技術(shù)學報,2016,31(4):187-193.
[8] 楊楠,黃禹,葉迪,等. 基于自適應多變量非參數(shù)核密度估計的多風電場出力相關(guān)性建模[J]. 中國電機工程學報,2018,38(13):3805-3812.
[9] 徐玉琴,陳坤,聶暘. 基于非參數(shù)核密度估計的風速短期相依模型[J]. 太陽能學報,2017,38(2):450-456.
[10] 任洲洋, 顏偉, 項波, 等. 考慮光伏和負荷相關(guān)性的概率潮流計算[J]. 電工技術(shù)學報,2015,30(24):181-187.
[11] CONSTANTE-FLORES G E, ILLINDALA M S.Data-Driven Probabilistic Power Flow Analysis for a Distribution System with Renewable Energy Sources Using Monte Carlo Simulation[J]. IEEE Transactions on Industry Applications,2019,55(1):174-181.
[12] 吳紅斌,白雪,王蕾. 基于序貫蒙特卡洛模擬的風光儲發(fā)電系統(tǒng)可靠性評估[J]. 太陽能學報,2017,38(6):1501-1509.
[13] BILLINTON R, FOTUHI-FIRUZABAD M.A reliability framework for generating unit commitment[J]. Electric Power Systems Research,2000,56(1):81-88.
[14] 徐玉琴,張揚,戴志輝. 基于非參數(shù)核密度估計和Copula函數(shù)的配電網(wǎng)供電可靠性預測[J]. 華北電力大學學報( 自然科學版),2017(6):14-19.
[15] 邵必林,邊根慶,張維琪,等. 采用k - 均值聚類算法的資源搜索模型研究[J]. 西安交通大學學報,2012,46(10):55-59.
[16] 鄧彬,郭創(chuàng)新,王越,等. 基于well-being分析的電網(wǎng)設(shè)備重要度評估與排序方法[J]. 電網(wǎng)技術(shù),2013,37(12):3489-3496.
[17] Probability Methods Subcommittee. IEEE reliability test system[J]. IEEE Transactions on Power Apparatus and Systems,1979,PAS-98(6):2047-2054.