220 kV同塔雙回線路雷擊閃絡故障分析
徐文玲1,周路遙2
(1 中鐵武漢電氣化局集團上海分公司,上海 201713;2 國網(wǎng)浙江省電力有限公司電力科學研究院,浙江 杭州 310014)
摘 要:對某220 kV同塔雙回線路雷擊閃絡故障進行分析。根據(jù)故障巡視情況、雷電信息數(shù)據(jù)、故障錄波情況、ATP-EMTP暫態(tài)仿真分析可綜合判定本次雙回同跳故障為雷電反擊造成,具體過程為:雷電擊中75#塔頂或相鄰地線,雷電流由桿塔接地裝置注入大地,導致75# 桿塔塔頂及塔身電位升高,在雙回線路的B、C兩相形成反擊過電壓,引起絕緣子串閃絡并發(fā)生線路同跳。提出根據(jù)線路通道的雷害評估結(jié)果來實施防雷整改,通過安裝線路避雷器及在桿塔下方架設耦合地線的改造措施,顯著提高了線路耐雷水平。
關(guān)鍵詞:線路同跳;反擊;雷電信息數(shù)據(jù);故障錄波;ATP-EMTP
中圖分類號:TM863 文獻標識碼:B 文章編號:1007-3175(2020)04-0048-04
Analysis of Lightning Flashover Fault on 220 kV Double Circuit Transmission Lines on the Same Tower
XU Wen-ling1, ZHOU Lu-yao2
(1 Wuhan Railway Electrification Bureau Group Shanghai Subsidiary, Shanghai 201713, China;
2 Electric Power Research Institute of State Grid Zhejiang Electric Power Co., Ltd, Hangzhou 310014, China)
Abstract: The lightning flashover failure of a 220 kV double-circuit transmission line is analyzed. According to the fault inspection situation, lightning information data, fault recording conditions, and ATP-EMTP transient simulation analysis, it can be comprehensively determined that the case of simultaneous tripping of double circuit lines was caused by lightning counterattack. The specific process is: the lightning hits 75 # tower top or adjacent ground line, lightning current is injected into the ground by the pole grounding device, which causes the potential of the tower top and tower body of 75 # rising, and counterattack over-voltage is formed in the B and C phases of the double-circuit line, causing the insulator string flashover and line trip. It is proposed to implement the lightning protection rectification based on the results of the lightning damage assessment of the line channel, and the lightning protection level of the line was significantly improved by the installation of line lightning arresters and the reconstruction measures of coupling ground lines under the tower.
Key words: simultaneous trip-out; counterattack; lightning information data; fault recording; ATP-EMTP
參考文獻
[1] 杜林, 戴斌, 司馬文霞, 等. 架空輸電線路雷電過電壓識別[J]. 高電壓技術(shù),2010,36(3):590-597.
[2] 黃志都, 廖民傳, 黃鋒, 等. 同塔多回輸電線路雷擊同跳及應對措施研究[J]. 電瓷避雷器,2019(2):142-145.
[3] 趙淳, 阮江軍, 李曉嵐, 等. 輸電線路綜合防雷措施技術(shù)經(jīng)濟性評估[J]. 高電壓技術(shù),2011,37(2):290-297.
[4] 杜林,陳寰,陳少卿,等. 架空輸電線路雷電繞擊與反擊的識別[J]. 高電壓技術(shù),2014,40(9):2885-2893.
[5] 中華人民共和國住房和城鄉(xiāng)建設部. 交流電氣裝置的過電壓保護和絕緣配合設計規(guī)范:GB/T 50064—2014[S]. 北京:中國計劃出版社,2014:18-22.
[6] 中華人民共和國國家質(zhì)量監(jiān)督檢測檢疫總局. 輸電線路分布式故障診斷系統(tǒng):GB/T 35721—2017[S]. 北京:中國計劃出版社,2017:25-32.
[7] 王劍,谷山強,趙淳,等. 計及工作電壓時同塔雙回輸電線路雷擊閃絡特性[J]. 高電壓技術(shù),2014,40(9):2923-2930.
[8] 國家電網(wǎng)公司. 交流架空輸電線路用絕緣子使用導則 第2 部分:復合絕緣子:Q/GDW 515.2—2010[S]. 北京:中國電力出版社,2010:5-13.
[9] 張思寒. 避雷器配置方式對220 kV同塔多回輸電線路防雷效果研究[J]. 電瓷避雷器,2015(2):82-86.
[10] 李振,余占清,何金良,等. 線路避雷器改善同塔多回線路防雷性能的分析[J]. 高電壓技術(shù),2011,37(12):3120-3128.