Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于風(fēng)電故障機(jī)組篩選的齒輪箱故障診斷研究

來源:電工電氣發(fā)布時間:2019-09-19 10:19 瀏覽次數(shù):717
基于風(fēng)電故障機(jī)組篩選的齒輪箱故障診斷研究
 
石慧1,趙巧娥2
(1 太原市康培園林綠化工程有限公司,山西 太原 030025;2 山西大學(xué) 電力工程系,山西 太原 030006)
 
    摘 要:利用改進(jìn)粒子群優(yōu)化模糊C均值聚類算法對雙饋風(fēng)力發(fā)電機(jī)組群進(jìn)行故障機(jī)組分類,并提出基于改進(jìn)粒子群優(yōu)化的模糊核聚類算法對雙饋風(fēng)力發(fā)電機(jī)組齒輪箱的已知以及未知故障進(jìn)行診斷分類。通過分析實(shí)際風(fēng)電場采集得來的齒輪箱振動數(shù)據(jù),驗(yàn)證所提方法不僅可以準(zhǔn)確快速地判斷出故障機(jī)組,而且還可以進(jìn)一步對發(fā)生的已知故障以及未知故障進(jìn)行一個很好的診斷。
    關(guān)鍵詞:雙饋風(fēng)力發(fā)電機(jī)組;模糊C 均值聚類算法;模糊核聚類算法;改進(jìn)粒子群優(yōu)化算法;故障診斷
     中圖分類號:TM614     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2019)09-0007-05
 
Gearbox Fault Diagnosis Based on Wind Turbine Fault Unit Selection
 
SHI hui1, ZHAO Qiao-e2
(1 Taiyuan City Kangpei Garden Greenery Engineering Limited Company, Taiyuan 030025, China;
2 Department of Electric Power Engineering, Shanxi University, Taiyuan 030006, China)
 
    Abstract: This paper used the improved particle swarm optimization fuzzy C means clustering algorithm to classify the fault units of doubly fed wind turbines, and presented a fuzzy kernel clustering algorithm based on the improved particle swarm optimization (PSO) for the diagnosis and classification of the known and unknown faults of the gear box of the doubly fed wind turbine. By analyzing the vibration data of the gear box collected by the actual wind farm, it is proved that the proposed method can not only judge the fault unit accurately and quickly, but also further diagnose the known fault and the unknown fault.
    Key words: doubly fed induction generator (DFIG); fuzzy C means clustering algorithm; fuzzy kernel clustering algorithm; improved particle swarm optimization algorithm; fault diagnosis
 
參考文獻(xiàn)
[1] 陳國平,李明節(jié),許濤,劉明松. 關(guān)于新能源發(fā)展的技術(shù)瓶頸研究[J]. 中國電機(jī)工程學(xué)報,2017,37(1):20-27.
[2] 龍霞飛, 楊蘋, 郭紅霞, 伍席文. 大型風(fēng)力發(fā)電機(jī)組故障診斷方法綜述[J]. 電網(wǎng)技術(shù),2017,41(11):3480-3491.
[3] 許愛東,黃文琦,陳華軍,李鵬,龍慶麟. 基于模糊神經(jīng)和局部統(tǒng)計的變壓器故障研究[J]. 電子技術(shù)應(yīng)用,2016,42(11):80-83.
[4] 劉秀麗, 徐小力. 基于深度信念網(wǎng)絡(luò)的風(fēng)電機(jī)組齒輪箱故障診斷方法[J]. 可再生能源,2017,35(12):1862-1868.
[5] 帕孜來·馬合木提,付玲,林吉凱. 基于SOM神經(jīng)網(wǎng)絡(luò)的三電平逆變器的故障診斷[J]. 電子技術(shù)應(yīng)用,2015,41(2):149-151.
[6] 帕孜來·馬合木提,廖俊勃,支嬋. 基于PSO-SVM的三相SPWM逆變電路故障診斷研究[J]. 電子技術(shù)應(yīng)用,2014,40(3):52-54.
[7] 林茂, 李孝全, 蘇楊. 基于改進(jìn)免疫遺傳算法的電網(wǎng)故障診斷研究[J]. 電子技術(shù)應(yīng)用,2012,38(8):66-68.