均壓環(huán)對復(fù)合絕緣子電場的影響研究
姚淮林,吳秋亮
(江蘇南瑞帕威爾電氣有限公司,江蘇 南京 211103)
摘 要:以復(fù)合支柱絕緣子為研究對象,利用有限元分析數(shù)值計(jì)算方法對絕緣子電場進(jìn)行分析計(jì)算,并探究均壓環(huán)對絕緣子電場的改善作用。當(dāng)絕緣子老化或者工藝欠缺而造成護(hù)套內(nèi)有氣泡時(shí),極易發(fā)生放電、擊穿以及燒蝕現(xiàn)象。同時(shí)絕緣子高壓法蘭部位第一個(gè)大小傘承擔(dān)了較多的電壓降,運(yùn)行中容易造成絕緣失敗。在絕緣子高壓側(cè)端部加裝均壓環(huán),并針對均壓環(huán)的尺寸和安裝位置對絕緣子電場的影響進(jìn)行分析。結(jié)果表明,絕緣子加裝均壓環(huán)可以明顯改善絕緣子附近的電場分布,降低第一只傘上的電場;且均壓環(huán)管徑越大、外徑越小時(shí)均壓效果越明顯。
關(guān)鍵詞:復(fù)合絕緣子;電場計(jì)算;均壓環(huán);絕緣分析
中圖分類號:TM216 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-3175(2018)10-0010-05
Research of Grading Ring Influence on Composite Insulator Electric Field
YAO Huai-lin, WU Qiu-liang
(Jiangsu Nari Power Electric Co., Ltd, Nanjing 2111 03, China)
Abstract: Taking the composite post insulator as the research object, this paper used the finite element analysis numerical computation method to carry out analysis and calculation for insulator electric fields and explored the impacts of grading ring on the insulator electric field. When the insulator aged or there were bubbles in the sheath due to technology defects, the discharge, breakdown and ablation phenomenon happened easily. And the field intensity concentrated around the first umbrella which might lead to the insulation fault, so a grading ring is set up at the end of high voltage flange and then its electrical field was calculated taking different dimensions and installation site of grading ring into consideration. The calculation results show that the insulator added the grading ring could obviously improve the electrical distribution around the insulator to reduce the electric field of the first umbrella, in addition, the electrical distribution will turn more average with larger diameter and more far location.
Key words: composite insulator; electrical field calculation; grading ring; insulation analysis
參考文獻(xiàn)
[1] 李翔,顧洪連. 三種絕緣子可靠性的比較[J]. 高電壓技術(shù),2007,33(5):191-193.
[2] 倪光正. 工程電磁場原理[M].3 版. 北京:高等教育出版社,2016.
[3] 厲偉,滕云,庚振新,等. 高電壓工程[M]. 北京:科學(xué)出版社,2011.
[4] 黃道春,阮江軍,劉佳,等.330 kV絕緣子串電壓分布和屏蔽環(huán)位置的優(yōu)化[J]. 高電壓技術(shù),2007,33(1):91-94.
[5] 沈鼎申,張孝軍,萬啟發(fā),等.750 kV線路絕緣子串電壓分布的有限元計(jì)算[J]. 電網(wǎng)技術(shù),2003,27(12):54-57.
[6] VOLAT C, FARZANEH M.Three-dimensional modeling of potential and electric field distributions along an EHV ceramic post insulator covered with ice—PartI: Simulations of a melting period[J].IEEE Transactions on Power Delivery,2005,20(3):2006-2013.
[7] 謝天喜,劉鵬,李靖,等. 交流1 000 kV同塔雙回輸電線路復(fù)合絕緣子電場分布[J]. 高電壓技術(shù),2010,36(1):224-229.
[8] 劉渝根,田金虎,劉孝為,等.750 kV同塔雙回輸電線路瓷絕緣子串電位分布數(shù)值分析[J]. 高電壓技術(shù),2010,36(7):1644-1650.
[9] 司馬文霞, 邵進(jìn), 楊慶. 應(yīng)用有限元法計(jì)算覆冰合成絕緣子電位分布[J]. 高電壓技術(shù),2007,33(4):21-25.
[10] 樊亞東,文習(xí)山,李曉萍,等. 復(fù)合絕緣子和玻璃絕緣子電位分布的數(shù)值仿真[J]. 高電壓技術(shù),2005,31(12):1-3.
[11] 徐志鈕,律方成,李和明,等. 絕緣子電場有限元分析法的影響因素及其優(yōu)化[J]. 高電壓技術(shù),2011,37(4):944-951.
[12] ZIENKIEWICA O C, TAYLOR R L,曾攀. 有限元方法基本原理[M].5 版. 北京:清華大學(xué)出版社,2008.