Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

新能源不確定功率預(yù)測方法綜述

來源:電工電氣發(fā)布時(shí)間:2018-09-14 09:14 瀏覽次數(shù):786
新能源不確定功率預(yù)測方法綜述
 
吳晨媛,呂干云,吳啟宇,蔣小偉
(南京工程學(xué)院 電力工程學(xué)院,江蘇 南京 211167)
 
    摘 要:新能源的不確定性功率預(yù)測研究能在傳統(tǒng)預(yù)測模型基礎(chǔ)上提高其預(yù)測精度并提供一定的概率信息和預(yù)測區(qū)間。從誤差概率密度預(yù)測、區(qū)間預(yù)測兩個(gè)方面對新能源功率預(yù)測的不確定性進(jìn)行分析,總結(jié)歸納了各種不同的模型及其優(yōu)缺點(diǎn)和評價(jià)指標(biāo),并探討了新能源不確定功率預(yù)測存在的問題及今后需要深入研究的方向。
    關(guān)鍵詞:新能源功率預(yù)測;不確定性;誤差概率密度預(yù)測;區(qū)間預(yù)測
    中圖分類號(hào):TM715     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2018)09-0001-06
 
Survey of Uncertainty Power Prediction Technique in New Energy
 
WU Chen-yuan, LV Gan-yun, WU Qi-yu, JIANG Xiao-wei
(School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 2111 67, China)
 
    Abstract: Uncertainty power prediction for the new energy prediction study, based on the traditional prediction model, could improve its prediction accuracy and provide a certain probability information and prediction interval. This paper analyzed the uncertainty of new energy power prediction, from the aspects of error probability density prediction and interval prediction, and summarized various models and their advantages, disadvantages and evaluation indexes. Finally, this paper discussed the problem of uncertainty prediction for the new energy power and directions for further research in the future.
    Key words: new energy power prediction; uncertainty; error probability density prediction; interval prediction
 
參考文獻(xiàn)
[1] 楊茂,劉紅柳,季本明. 基于混沌理論的風(fēng)電功率超短期多步預(yù)測的誤差分析[J]. 電力系統(tǒng)保護(hù)與控制,2017,45(4):50-55.
[2] CARRASCO J M,F(xiàn)RANQUELO L G, BIALASIEWICZ J T, et al.Power-electronic systems for the grid integration of renewable energy sources:a survey[J]. IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
[3] 丁明,王偉勝,王秀麗,等. 大規(guī)模光伏發(fā)電對電力系統(tǒng)影響綜述[J]. 中國電機(jī)工程學(xué)報(bào),2014,34(1):2-14.
[4] SIDERATOS G, HATZIARGYRIOU N D. An Advanced Statistical Method for Wind Power Forecasting[J]. IEEE Transactions on Power System,2007,22(1):258-265.
[5] 張曉丹. 風(fēng)電功率預(yù)測誤差不確定性建模研究[D]. 北京:北京交通大學(xué),2016.
[6] ZIADI Zakaria, OSHIRO Masato, SENJYU Tomonobu, et al. Optimal Voltage Control Using Inverters Interfaced with PV Systems Considering Forecast Error in a Distribution System[J]. IEEE Transactions on Sustainable Energy,2014,5(2):682-690.
[7] TEWARI S, GEYER C J, MOHAN N. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets[J]. IEEE Transactions on Power System,2011,26(4):2031-2039.
[8] 劉立陽, 吳軍基, 孟紹良. 短期風(fēng)電功率預(yù)測誤差分布研究[J]. 電力系統(tǒng)保護(hù)與控制,2013,41(12):65-70.
[9] LI Y Q, HE W, YAN X B. Default probability of listed companies based on the generalized error distribution[C]//Proceedings of the 2010 International Conference on Multimedia Technology,2010:1-4.
[10] 楊宏,苑津莎,張鐵峰. 一種基于Beta分布的風(fēng)電功率預(yù)測誤差最小概率區(qū)間的模型和算法[J]. 中國電機(jī)工程學(xué)報(bào),2015,35(9):2135-2142.
[11] 劉芳,潘毅,劉輝,等. 風(fēng)電功率預(yù)測誤差分段指數(shù)分布模型[J]. 電力系統(tǒng)自動(dòng)化,2013,37(18):14-19.
[12] 劉燕華,李偉花,劉沖,等. 短期風(fēng)電功率預(yù)測誤差的混合偏態(tài)分布模型[J]. 中國電機(jī)工程學(xué)報(bào),2015,35(10):2375-2382.
[13] 葉林,任成,趙永寧,饒日晟,滕景竹. 超短期風(fēng)電功率預(yù)測誤差數(shù)值特性分層分析方法[J]. 中國電機(jī)工程學(xué)報(bào),2016,36(3):692-700.
[14] 楊茂,董駿城. 基于混合高斯分布的風(fēng)電功率實(shí)時(shí)預(yù)測誤差分析[J]. 太陽能學(xué)報(bào),2016,37(6):1594-1602.
[15] 王成福,王昭卿,孫宏斌,等. 考慮預(yù)測誤差時(shí)序分布特性的含風(fēng)電機(jī)組組合模型[J]. 中國電機(jī)工程學(xué)報(bào),2016,36(15):4081-4090.
[16] EPSNECNIKOV V A. Nonparametric estimation of a multidimensional probability density[J]. Theory of Probability & Its Applications,1969,14(1):156-161.
[17] JEON J, TAYLOR J W. Using conditional kernel density estimation for wind power density forecasting[J]. Journal of the American Statistical Association,2012,107(497):66-79.
[18] 姜曉亮,李巍,呂項(xiàng)羽,等. 基于非參數(shù)核密度估計(jì)法的光儲(chǔ)系統(tǒng)容量優(yōu)化配置[J]. 高電壓技術(shù),2015,41(7):2225-2230.
[19] MATTHIAS Lange, DETLEV Heinemann. Relating the uncertainty of short-term wind speed predictions to meteorological situations with methods from synoptic climatology[C]//European Wind Energy Conference & Exhibition EWEC,2003.
[20] HAGAN K E, OYEBANJO O O, MASAUD T M, et al. A probabilistic forecasting model for accurate estimation of PV solar and windpower generation[C]//IEEE Power and Energy Conference at Illinois,2016.
[21] 王錚,王偉勝,劉純,等. 基于風(fēng)過程方法的風(fēng)電功率預(yù)測結(jié)果不確定性估計(jì)[J]. 電網(wǎng)技術(shù),2013,37(1):242-247.
[22] 趙唯嘉,張寧,康重慶,等. 光伏發(fā)電出力的條件預(yù)測誤差概率分布估計(jì)方法[J]. 電力系統(tǒng)自動(dòng)化,2015,39(16):8-15.
[23] 周松林,茆美琴,蘇建徽. 風(fēng)電功率短期預(yù)測及非參數(shù)區(qū)間估計(jì)[J]. 中國電機(jī)工程學(xué)報(bào),2011,31(25):10-16.
[24] 劉興杰,謝春雨. 基于貝塔分布的風(fēng)電功率波動(dòng)區(qū)間估計(jì)[J]. 電力自動(dòng)化設(shè)備,2014,34(12):26-30.
[25] 盛驟,謝式千,潘承毅. 概率論與數(shù)理統(tǒng)計(jì)[M]. 北京:高等教育出版社,2008:270-278.
[26] 王勃,劉純,張俊,等. 基于Monte-Carlo方法的風(fēng)電功率預(yù)測不確定性估計(jì)[J]. 高電壓技術(shù),2015,41(10):3385-3391.
[27] 陳建寶,丁軍軍. 分位數(shù)回歸技術(shù)綜述[J]. 統(tǒng)計(jì)與信息論壇,2008(3):89-96.
[28] 李智,韓學(xué)山,楊明,等. 基于分位點(diǎn)回歸的風(fēng)電功率波動(dòng)區(qū)間分析[J]. 電力系統(tǒng)自動(dòng)化,2011,35(3):83-87.
[29] WAN Can, LIN Jin, SONG Yonghua, XU Zhao, YANG Guangya. Probabilistic Forecasting of Photovoltaic Generation:An Efficient Statistical Approach[J]. IEEE Transactions on Power System,2017,32(3):2471-2472.
[30] ANTONIO Bracale,GUIDO Carpinelli,PASQUALE De Falco. A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting[J]. IEEE Transactions on Sustainable Energy,2017,8(2):551-560.
[31] 楊錫運(yùn),關(guān)文淵,劉玉奇,肖運(yùn)啟. 基于粒子群優(yōu)化的核極限學(xué)習(xí)機(jī)模型的風(fēng)電功率區(qū)間預(yù)測方法[J]. 中國電機(jī)工程學(xué)報(bào),2015,35(S1):146-153.
[32] 閻潔,劉永前,張浩,等. 基于風(fēng)場景識(shí)別的動(dòng)態(tài)風(fēng)電功率概率預(yù)測方法[J]. 現(xiàn)代電力,2016,33(2):51-58.
[33] 韓爽, 劉永前, 楊勇平, 等. 風(fēng)電場超短期功率預(yù)測及不確定性分析[J]. 太陽能學(xué)報(bào),2011,32(8):1251-1256.
[34] 周同旭,周松林. 光伏發(fā)電功率區(qū)間概率預(yù)測[J]. 銅陵學(xué)院學(xué)報(bào),2017,16(2):108-110.
[35] 董雷,周文萍,張沛,等. 基于動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)的光伏發(fā)電短期概率預(yù)測[J]. 中國電機(jī)工程學(xué)報(bào),2013,33(S1):38-45.
[36] 徐曼,喬穎,魯宗相. 短期風(fēng)電功率預(yù)測誤差綜合評價(jià)方法[J]. 電力系統(tǒng)自動(dòng)化,2011,35(12):20-26.
[37] 孟巖峰,胡書舉,鄧雅,等. 風(fēng)電功率預(yù)測誤差分析及預(yù)測誤差評價(jià)方法[J]. 電力建設(shè),2013,34(7):6-9.
[38] 吳問足,喬穎,魯宗相,等. 風(fēng)電功率概率預(yù)測方法及展望[J]. 電力系統(tǒng)自動(dòng)化,2017,41(18):167-175.
[39] 葉瑞麗,劉建楠,苗峰顯,等. 風(fēng)電場風(fēng)電功率預(yù)測誤差分析及置信區(qū)間估計(jì)研究[J]. 陜西電力,2017,45(2):21-25.
[40] 林優(yōu),楊明,韓學(xué)山,等. 基于條件分類與證據(jù)理論的短期風(fēng)電功率非參數(shù)概率預(yù)測方法[J]. 電網(wǎng)技術(shù),2016,40(4):1113-1119.