Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁(yè) >> 發(fā)行征訂 >> 征訂方式

基于主動(dòng)支撐技術(shù)的調(diào)相機(jī)與風(fēng)力發(fā)電機(jī)組協(xié)同控制

來源:電工電氣發(fā)布時(shí)間:2025-05-28 09:28瀏覽次數(shù):6

基于主動(dòng)支撐技術(shù)的調(diào)相機(jī)與風(fēng)力發(fā)電機(jī)組協(xié)同控制

屠立忠1,顧潤(rùn)知2,洪岑岑1,祝智祥2,蔡龍飛2
(1 南京工程學(xué)院 自動(dòng)化學(xué)院,江蘇 南京 211167;
2 南京工程學(xué)院 電力工程學(xué)院,江蘇 南京 211167)
 
    摘 要:為提高風(fēng)力發(fā)電機(jī)組的慣量支撐水平與電網(wǎng)故障時(shí)的電壓恢復(fù)能力,提出基于主動(dòng)支撐技術(shù)的調(diào)相機(jī)與風(fēng)力發(fā)電機(jī)組協(xié)同控制。通過結(jié)合風(fēng)機(jī)轉(zhuǎn)子動(dòng)能與直流電容充放電特性,設(shè)計(jì)轉(zhuǎn)子虛擬慣量控制與直流電容虛擬慣量協(xié)調(diào)控制方法,在電網(wǎng)頻率波動(dòng)時(shí)快速釋放能量以抑制頻率波動(dòng);同時(shí)在并網(wǎng)點(diǎn)配置同步調(diào)相機(jī),通過動(dòng)態(tài)調(diào)節(jié)無功功率補(bǔ)償電網(wǎng)電壓跌落?;?MATLAB/Simulink 軟件搭建仿真模型,結(jié)果表明:協(xié)調(diào)控制策略可顯著提升頻率支撐能力,并減少頻率恢復(fù)時(shí)間;同步調(diào)相機(jī)可有效抑制電網(wǎng)電壓驟降,使故障后母線電壓恢復(fù)速度提升30%。該策略實(shí)現(xiàn)了頻率與電壓的雙重主動(dòng)支撐,增強(qiáng)了風(fēng)電并網(wǎng)系統(tǒng)的同步穩(wěn)定性,為新能源高比例接入電力系統(tǒng)提供了技術(shù)參考。
    關(guān)鍵詞: 風(fēng)力發(fā)電;虛擬慣量;同步調(diào)相機(jī);主動(dòng)支撐
    中圖分類號(hào):TM614     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2025)05-0021-07
 
Cooperative Control of Condenser and Wind Turbine Based on
Active Support Technology
 
TU Li-zhong1, GU Run-zhi2, HONG Cen-cen1, ZHU Zhi-xiang2, CAI Long-fei2
(1 School of Automation, Nanjing Institute of Technology, Nanjing 211167, China;
2 School of Electrical Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
 
    Abstract: In order to improve the inertia support level of wind turbine and the voltage recovery ability when the power grid fails, this paper proposes the cooperative control of the condenser and wind turbine based on active support technology. By combining the wind turbine rotor kinetic energy with the charging and discharging characteristics of DC capacitor, a coordinated control method for rotor virtual inertia and DC capacitor virtual inertia are designed to release energy quickly when the power grid frequency fluctuates to suppress frequency fluctuation.At the same time, a synchronous condenser is arranged at the grid connection point, and the voltage drop of the power grid is compensated by dynamically adjusting reactive power. The simulation model based on MATLAB/Simulink is built. The results show that the coordinated control strategy can significantly improve the frequency support ability and reduce the frequency recovery time. The synchronous condenser can effectively suppress the voltage sag of the power grid and increase the recovery speed of bus voltage by 30% after the fault.This strategy realizes the dual active support of frequency and voltage, enhances the synchronous stability of wind power grid-connected system,and provides technical reference for high proportion of new energy connected to power system.
    Key words: wind power generation; virtual inertia; synchronous condenser; active support
 
參考文獻(xiàn)
[1] 張川, 胡沛裕, 殷格格, 等. 低碳能源系統(tǒng)中能源利用技術(shù)現(xiàn)狀及展望[J] . 中國(guó)工程科學(xué),2024,26(4) :164-175.
[2] 華偉. 低碳經(jīng)濟(jì)背景下中國(guó)風(fēng)力發(fā)電跨區(qū)并網(wǎng)研究[J].智能城市,2018,4(12) :156-157.
[3] 邵昊舒,蔡旭. 大型風(fēng)電機(jī)組慣量控制研究現(xiàn)狀與展望[J] . 上海交通大學(xué)學(xué)報(bào)(自然版),2018,52(10) :1166-1177.
[4] YOU Rui, CHAI Jianyun, SUN Xudong, et al.Experimental Study on Frequency Support of  Variable Speed Wind Turbine Based on Electromagnetic Coupler[J].Journal of Power Relectroics,2018,18(1) :195-203.
[5] ZHAO Jingjing , LYU Xue , FU Yang , et al .Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control[J].IEEE Transactions on Energy Conservation,2016,31(3) :833-845.
[6] 邢鵬翔,侍喬明,王剛,等. 風(fēng)電機(jī)組虛擬慣量控制的響應(yīng)特性及機(jī)理分析[J] . 高電壓技術(shù),2018,44(4) :1302-1310.
[7] HOWLADER A M, SENJYU T, SABER A Y.Anintegrated power smoothing control for a grid-interactive wind farm considering wake effects[J].IEEE Systems Journal,2015,9(3) :954-965.
[8] UEHARA A, PRATAP A, GOYA T, et al.A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS[J].IEEE Transactions on Energy Conversion,2011,26(2) :550-558.
[9] ARANI M F M, EL-SAADANY E F.Implementing virtual inertia in DFIG-based wind power generation[J].IEEE Transactions on Power Systems,2013,28(2) :1373-1384.
[10] 張志猛,賈伯巖,張建忠,等. 新型大容量調(diào)相機(jī)在特高壓直流輸電中的應(yīng)用研究[J] . 河北電力技術(shù),2019,38(4) :1-4.
[11] 崔燦燦. 新一代分布式調(diào)相機(jī)的動(dòng)態(tài)特性分析及參數(shù)優(yōu)化[D]. 哈爾濱:哈爾濱理工大學(xué),2021.
[12] 祁曉笑,程靜,王維慶,等. 基于 SC 的光伏發(fā)電并網(wǎng)系統(tǒng)次同步振蕩抑制方法[J] . 智慧電力,2023,51(5) :88-95.
[13] 曹明鋒. 直驅(qū)型永磁同步風(fēng)力發(fā)電系統(tǒng)變流器的控制研究[D]. 長(zhǎng)沙:湖南工業(yè)大學(xué),2013.
[14] 馮智慧,蘇益輝,李曉英,等. 直驅(qū)永磁同步風(fēng)電的虛擬慣量控制策略[J] . 機(jī)械研究與應(yīng)用,2022,35(4) :143-147.
[15] 袁康男. 直驅(qū)型永磁同步風(fēng)電機(jī)組參與電網(wǎng)頻率支撐的研究[D]. 青島:青島大學(xué),2020.
[16] 朱介北,史美琦,張利,等. 基于超級(jí)電容的海上風(fēng)電柔直送出系統(tǒng)協(xié)調(diào)慣量支撐策略[J] . 電網(wǎng)技術(shù),2022,46(8) :2938-2947.
[17] ZHU J, BOOTH C D, ADAM G P, et al.Inertia Emulation Control Strategy for VSC-HVDC Transmission Systems[J].IEEE Transactions on Power Systems,2013,28(2) :1277-1287.
[18] 曹煒,張?zhí)?,傅業(yè)盛,等. 同步調(diào)相機(jī)增強(qiáng)電力系統(tǒng)慣性和改善頻率響應(yīng)的研究與應(yīng)用[J]. 電力系統(tǒng)自動(dòng)化,2020,44(3) :1-10.
[19] 史大雷. 同步調(diào)相機(jī)接入的雙饋風(fēng)力發(fā)電系統(tǒng)次同步振蕩抑制研究[D]. 哈爾濱:哈爾濱理工大學(xué),2023.
[20] 陳尚鵬. 調(diào)相機(jī)勵(lì)磁控制及其容量配置研究[D]. 蘭州:蘭州理工大學(xué),2023.