參考文獻
[1] 齊霽. 淺析能源轉(zhuǎn)型助力實現(xiàn)“雙碳”目標[J]. 環(huán)渤海經(jīng)濟瞭望,2024(2) :36-40.
[2] 吳榆俊,鐘森. 風(fēng)光儲微電網(wǎng)容量配置優(yōu)化綜述[ J ] .電氣技術(shù)與經(jīng)濟,2022(4) :23-25.
[3] STET D, CZUMBIL L, MICU D D, et al.Power factor correction using EMTP-RV for engineering education[C]//2019 54th International Universities Power Engineering Conference(UPEC), 2019 :1-5.
[4] SHAO H, HENRIQUES R, MORAIS H, et al.Power quality monitoring in electric grid integrating offshore wind energy: A review[J].Renewable and Sustainable Energy Reviews,2024,191 :114094.
[5] 王燕. 電能質(zhì)量擾動檢測的研究綜述[J]. 電力系統(tǒng)保護與控制,2021,49(13) :174-186.
[6] OLIVEIRA R A, BOLLEN M H J.Deep learning for power quality[J].Electric Power Systems Research,2023,214 :108887.
[7] RAY P K, MOHANTY S R, KISHOR N.Classification of power quality disturbances due to environmental characteristics in distributed generationsystem[J].IEEE Transactions on Sustainable Energy,2012,4(2) :302-313.
[8] ROBERTSON D C, CAMPS O I, MAYER J S, et al.Wavelets and electromagnetic power system transients[J].IEEE Transactions on Power Delivery,1996,11(2) :1050-1058.
[9] WRIGHT P S.Short-Time Fourier Transforms and Wigner-Ville Distributions Applied to the Calibration of Power Frequency Harmonic Analyzers[J].IEEE Transactions on Instrumentation and Measurement,1999,48(2) :475-478.
[10] GU Y H, BOLLEN M H J.Time-frequency and timescale domain analysis of voltage disturbances[J].IEEE Transactions on Power Delivery,2000,15(4) :1279-1284.
[11] SEVGI L.Numerical Fourier Transforms: DFT and FFT[J].IEEE Antennas and Propagation Magazine,2007,49(3) :238-243.
[12] LAI L L, CHAN W L, TSE C T, et al.Real-time frequency and harmonic evaluation using artificial neural networks[J].IEEE Transactions on Power Delivery,1999,14(1) :52-59.
[13] 張明銳,孫佳秀,周霖. 基于小波變換和 FFT 的電能質(zhì)量擾動分類[J]. 機電一體化,2010,16(12) :29-34.
[14] KARIMI M, MOKHTARI H, IRAVANI M R.Wavelet based on-line disturbance detection for power quality applications[J].IEEE Transactions on Power Delivery,2000,15(4) :1212-1220.
[15] HE H , SHEN X , STARZYK J A . Power quality disturbances analysis based on EDMRA method[J].International Journal of Electrical Power & Energy Systems, 2009,31(6) :258-268.
[16] THIRUMALA K, PAL S, JAIN T, et al.A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J].Neurocomputing, 2019, 334 :265-274.
[17] LEE I W, DASH P K.S-transform-based intelligent system for classification of power quality disturbance signals[J].IEEE Transactions on Industrial Electronics, 2003, 50(4) :800-805.
[18] CHILUKURI M V , DASH P K . Multiresolution S-transform-based fuzzy recognition system for power quality events[J].IEEE Transactions on Power Delivery, 2004, 19(1) :323-330.
[19] 朱勇,陶用偉,李澤群. 基于 S 變換與特征優(yōu)選的電能質(zhì)量擾動識別[J]. 電工技術(shù),2023(21) :97-100.
[20] BISWAL B, BISWAL M, MISHRA S, et al.Automatic classification of power quality events using balanced neural tree[J].IEEE Transactions on Industrial Electronics,2013,61(1) :521-530.
[21] JAYASREE T, DEVARAJ D, SUKANESH R.Power quality disturbance classification using Hilbert transform and RBF networks[J].Neurocomputing,2010,73(7/9) :1451-1456.
[22] 蘭名揚,劉宇龍,金濤,等. 基于可視化軌跡圓和 ResNet18 的復(fù)合電能質(zhì)量擾動類型識別[J] . 中國電機工程學(xué)報,2022,42(17) :6274-6285.
[23] 徐佳雄,張明,王陽,等. 基于改進 Hilbert-Huang 變換的電能質(zhì)量擾動定位與分類[J] . 現(xiàn)代電力,2021,38(4) :362-369.
[24] 張小東. 基于自適應(yīng)卡爾曼濾波算法在電能質(zhì)量檢測中的應(yīng)用[D]. 長沙:長沙理工大學(xué),2019.
[25] BOLLEN M H J, GU I Y H.Signal processing of power quality disturbances[M].New York :John Wiley & Sons, 2006.
[26] 陳子璇,席燕輝,沈銀. 基于卡爾曼濾波和深度置信網(wǎng)絡(luò)的復(fù)合電能質(zhì)量擾動分類[J]. 電力系統(tǒng)保護與控制,2022,50(7) :81-90.
[27] REDDY J B V, DASH P K, SAMANTARAY R, et al.Fast tracking of power quality disturbance signals using an optimized unscented filter[J].IEEE Transactions on Instrumentation and Measurement,2009,58(12) :3943-3952.
[28] HUANG S J, HUANG C L, HSIEH C T.Application of Gabor transform technique to supervise power system transient harmonics[J].IEE Proceedings-Generation, Transmission and Distribution,1996,143(5) :461-466.
[29] KAWADY T A, ELKALASHY N I, IBRAHIM A E, et al.Arcing fault identification using combined Gabor transform-neural network for transmission lines[J].International Journal of Electrical Power & Energy Systems,2014,61 :248-258.
[30] CHO S H, JANG G, KWON S H.Time-frequency analysis of power-quality disturbances via the Gabor-Wigner transform[J].IEEE Transactions on Power Delivery,2010,25(1) :494-499.
[31] 商立群,李朝彪,鄧力文,等. 基于 ISSA-XGBoost 的電能質(zhì)量擾動識別方法研究[J] . 電力系統(tǒng)保護與控制,2024,52(13) :115-124.
[32] 李天云,陳昌雷,周博,等. 奇異值分解和最小二乘支持向量機在電能質(zhì)量擾動識別中的應(yīng)用[J]. 中國電機工程學(xué)報,2008,28(34) :124-128.
[33] 瞿合祚,劉恒,李曉明,等. 一種電能質(zhì)量多擾動分類中特征組合優(yōu)化方法[J] . 電力自動化設(shè)備,2017,37(3) :146-152.
[34] AHILA R, SADASIVAM V, MANIMALA K.An integrated PSO for parameter determination and feature selection of ELM and its application inclassification of power system disturbances[J].Applied Soft Computing,2015,32 :23-37.
[35] BISWAL B, DASH P K, MISHRA S.A hybrid ant colony optimization technique for power signal pattern classification[J].Expert Systems with Applications,2011,38(5) :6368-6375.
[36] 阮梓航,肖先勇,胡文曦,等. 基于多粒度特征選擇和模型融合的復(fù)合電能質(zhì)量擾動分類特征優(yōu)化[J]. 電力系統(tǒng)保護與控制,2022,50(14) :1-10.
[37] HUANG N, LU G, CAI G, et al.Feature selection of power quality disturbance signals with an entropy-importance-based random forest[J].Entropy,2016,18(2) :44.
[38] CAMARILLO-PE~NARANDA J R , RAMOS G . Fault classification and voltage sag parameters computation using voltage ellipses[C]//IEEE 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference(I&CPS),2018 :1-6.
[39] LUO Y, LI K, LI Y, et al.Three-layer Bayesian network for classification of complex power quality disturbances[J].IEEE Transactions on Industrial Informatics,2017,14(9) :3997-4006.
[40] 聶曉華. 一種基于卡爾曼濾波的電能質(zhì)量擾動檢測新方法[J] . 中國電機工程學(xué)報,2017,37(22) :6649-6658.
[41] DENG L, YU D.Deep learning: Methods and applications[J].Foundations and Trends® in Signal Processing,2013,7(3/4) :197-387.
[42] WANG X.Deep learning in object recognition,detection, and segmentation[J].Foundations and Trends® in Signal Processing,2016,8(4):217-382.
[43] 龔正,鄒陽,金濤,等. 基于特征融合并行優(yōu)化模型的電能質(zhì)量擾動分類方法[J] . 中國電機工程學(xué)報,2023,43(3) :1017-1027.
[44] 鄭煒,林瑞全,王俊,等. 基于 GAF 與卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J] . 電力系統(tǒng)保護與控制,2021,49(11) :97-104.
[45] 瞿合祚,李曉明,陳陳,等. 基于卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J] . 武漢大學(xué)學(xué)報(工學(xué)版),2018,51(6) :534-539.
[46] 陳偉,何家歡,裴喜平. 基于相空間重構(gòu)和卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J] . 電力系統(tǒng)保護與控制,2018,46(14) :87-93.
[47] 賀才郡,李開成,董宇飛,等. 基于知識蒸餾與 RP-MobileNetV3 的電能質(zhì)量復(fù)合擾動識別[J]. 電力系統(tǒng)保護與控制,2023,51(14) :75-84.
[48] 張立鵬,鄭巖,秦剛,等. 一種實時電能質(zhì)量擾動識別分類方法[J]. 河北工業(yè)科技,2019,36(1) :50-54.
[49] 錢倍奇,陳謙,李宗源,等. 基于馬爾可夫轉(zhuǎn)換場與多頭注意力機制的電能質(zhì)量擾動分類方法[J]. 電網(wǎng)技術(shù),2024,48(2) :721-729.
[50] 張逸,歐杰宇,金濤,等. 基于特征圖像組合與改進 ResNet-18 的電能質(zhì)量擾動識別方法[J]. 中國電機工程學(xué)報,2024,44(7) :2531-2544.
[51] 王維博,張斌,曾文入,等. 基于特征融合一維卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J]. 電力系統(tǒng)保護與控制,2020,48(6) :53-60.
[52] 王偉,李開成,許立武,等. 基于一維卷積神經(jīng)網(wǎng)絡(luò)多任務(wù)學(xué)習(xí)的電能質(zhì)量擾動識別方法[J] . 電測與儀表,2022,59(3) :18-25.
[53] 王繼東,張迪. 基于側(cè)輸出融合卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類方法[J] . 電力自動化設(shè)備,2021,41(11) :107-112.
[54] 朱瑞金,郭威麟,龔雪嬌. 基于自編碼器和卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J]. 電力系統(tǒng)及其自動化學(xué)報,2019,31(7) :70-75.
[55] 曹夢舟, 張艷. 基于卷積-長短期記憶網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J] . 電力系統(tǒng)保護與控制,2020,48(2) :86-92.
[56] 劉佳翰,陳克緒,馬建,等. 基于卷積神經(jīng)網(wǎng)絡(luò)和隨機森林的三相電壓暫降分類[J] . 電力系統(tǒng)保護與控制,2019,47(20) :112-118.
[57] CHEN Z, LI M, JI T, et al.Real-time recognition of power quality disturbance-based deep belief network using embedded parallel computing platform[J].IEEJ Transactions on Electrical and Electronic Engineering,2020,15(4) :519-526.
[58] 胡婧, 周洋, 何志強, 等. 基于深度置信網(wǎng)絡(luò)和隨機森林的電力擾動檢測方法[J]. 供用電,2020,37(9) :17-22.
[59] 武昭旭,楊岸,祝龍記. 基于循環(huán)神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動識別[J] . 電力系統(tǒng)保護與控制,2020,48(18) :88-94.
[60] 王以忠,欒振國,郭肖勇,等. 基于注意力機制和雙向長短期記憶網(wǎng)絡(luò)的電能質(zhì)量擾動識別[J]. 天津科技大學(xué)學(xué)報,2021,36(4) :51-56.
[61] KHETARPAL P, NAGPAL N, SIANO P, et al.Power quality disturbance signal segmentation and classification based on modified BI-LSTM with double attention mechanism[J].IET Generation,Transmission & Distribution,2024,18(1) :50-62.
[62] 簡獻忠,王緒濤,王如志. 基于生成對抗網(wǎng)絡(luò)的電能質(zhì)量信號壓縮重構(gòu)方法[J] . 控制工程,2021,28(8) :1654-1661.
[63] 屈相帥,段斌,尹橋宣,等. 基于稀疏自動編碼器深度神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類方法[J]. 電力自動化設(shè)備,2019,39(5) :157-162.