參考文獻
[1] 汪欣. 基于神經(jīng)網(wǎng)絡(luò)的風(fēng)電功率優(yōu)化預(yù)測方法[D]. 上海:上海交通大學(xué),2020.
[2] ZHU Changsheng, ZHU Lina.Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction[J].Journal of Shanghai Jiaotong University(Science),2024,29(2) :297-308.
[3] CHEN Gonggui, LI Lijun, ZHANG Zhizhong, et al.Short-term wind speed forecasting with principle-subordinate predictor based on Conv-LSTM and improved BPNN[J].IEEE Access,2020,8 :67955-67973.
[4] 程杰,陳鼎,李春,等. 基于 GWO-CNN-BiLSTM 的超短期風(fēng)電預(yù)測[J] . 科學(xué)技術(shù)與工程,2023,23(35) :15091-15099.
[5] 符楊,任子旭,魏書榮,等. 基于改進 LSTM-TCN 模型的海上風(fēng)電超短期功率預(yù)測[J] . 中國電機工程學(xué)報,2022,42(12) :4292-4302.
[6] 郎偉明,麻向津,周博文,等.基于 LSTM 和非參數(shù)核密度估計的風(fēng)電功率概率區(qū)間預(yù)測[J].智慧電力,2020,48(2) :31-37.
[7] WANG W, FENG B, HUANG G, et al.Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction[J].Applied Energy,2023,333 :120634.
[8] BENTSEN L D, WARAKAGODA N D, STENBRO R, et al. pSatiotemporal wind speed forecasting using graph networks and novel transformer architectures[J].Applied Energy,2023,333 :120565.
[9] WANG Lei, HE Yigang, LI Lie, et al.A novel approach to ultra-short-term multi-step wind power predictions based on encoder-decoder architecture in natural language processing[J].Journal of Cleaner Production,2022,354 :131723.
[10] 駱釗,吳諭侯,朱家祥,等. 基于多尺度時間序列塊自編碼 Transformer 神經(jīng)網(wǎng)絡(luò)模型的風(fēng)電超短期功率預(yù)測[J]. 電網(wǎng)技術(shù),2023,47(9) :3527-3536.
[11] 林錚,劉可真,沈賦,等. 考慮海上風(fēng)電多機組時空特性的超短期功率預(yù)測模型[J] . 電力系統(tǒng)自動化,2022,46(23) :59-66.
[12] WU Haixu, XU Jiehui, WANG Jianmin, et al.Autoformer: Decomposition transformers with autocorrelation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34 :22419-22430.
[13] 王渝紅,史云翔,周旭,等. 基于時間模式注意力機制的 BiLSTM 多風(fēng)電機組超短期功率預(yù)測[J]. 高電壓技術(shù),2022,48(5) :1884-1892.
[14] 宋柯. 基于多時間尺度及注意力機制的風(fēng)電功率預(yù)測技術(shù)研究[D]. 重慶:重慶理工大學(xué),2023.
[15] 李靜茹,姚方. 引入注意力機制的 CNN 和 LSTM 復(fù)合風(fēng)電預(yù)測模型[J]. 電氣自動化,2022,44(6) :4-6.
[16] 王家樂,張耀,林帆,等. 基于自注意力特征提取的光伏功率組合概率預(yù)測[J] . 太陽能學(xué)報,2024,45(12) :123-131.
[17] CAI J , ZHANG K , JIANG H . Power Quality Disturbance Classification Based on Parallel Fusion of CNN and GRU [J] . Energies,2023,16(10) :4029.
[18] 喬石,王磊,張鵬超,等. 基于時間模式注意力機制的 GRU 短期負荷預(yù)測[J] . 電力系統(tǒng)及其自動化學(xué)報,2023,35(10) :49-58.
[19] 龍鋮,余成波,何鋮,等. 基于雙重注意力機制 CNN-BiLSTM 與 LightGBM 誤差修正的超短期風(fēng)電功率預(yù)測[J].電氣工程學(xué)報,2024,19(2) :138-145.
[20] LUONG M T, PHAM H, MANNING C D.Effective approaches to attention-based neural machine translation[J].ArXiv Preprint ArXiv,2015,1508 :04025.