Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于GA-GWO算法的電動汽車有序充放電兩階段優(yōu)化策略

來源:電工電氣發(fā)布時間:2025-03-03 14:03瀏覽次數(shù):4

基于GA-GWO算法的電動汽車有序充放電兩階段優(yōu)化策略

閆麗梅1,王登銀1,洪益民1,劉繼翔2
(1 東北石油大學(xué) 電氣信息工程學(xué)院,黑龍江 大慶 163318;
2 國網(wǎng)河南省電力公司新縣供電公司,河南 新縣 465550)
 
    摘 要:電動汽車(EV)聚集性無序充電會對電力系統(tǒng)的安全與穩(wěn)定性運行產(chǎn)生不良影響??紤]電網(wǎng)側(cè)的調(diào)峰需求和 EV 用戶的充電需求及充電成本,在基于分時電價的基礎(chǔ)上,提出最小臨界電量對 EV 向電網(wǎng)進行饋電進行限制,并給出一種基于最小臨界電量的兩階段有序充放電控制策略,以 EV 用戶充電費用最小與電網(wǎng)負(fù)荷波動最小為目標(biāo),建立 EV 充放電優(yōu)化模型。利用遺傳-灰狼優(yōu)化算法(GA-GWO)對 EV 的充放電行為進行優(yōu)化,采用蒙特卡洛法模擬某居民區(qū) 450 輛 EV 的充電需求,與其他充電策略在不同滲透率的場景下進行了對比仿真,結(jié)果表明,所提出充放電優(yōu)化策略能起到降低負(fù)荷方差以及削峰填谷作用,且隨著參與調(diào)度的電動汽車數(shù)量增多,優(yōu)化效果更明顯。
    關(guān)鍵詞: 電動汽車;分時電價;最小臨界電量;兩階段有序充放電;遺傳- 灰狼優(yōu)化算法
    中圖分類號:TM734 ;U469.72     文獻標(biāo)識碼:A     文章編號:1007-3175(2025)02-0024-08
 
A Two-Stage Optimization Strategy for Orderly Charging and Discharging of
Electric Vehicles Based on GA-GWO Algorithm
 
YAN Li-mei1, WANG Deng-yin1, HONG Yi-min1, LIU Ji-xiang2
(1 School of Electrical & Information Engineering, Northeast Petroleum University, Daqing 163318, China;
2 Xinxian Power Supply Company of State Grid Henan Electric Power Company, Xinxian 465550, China)
 
    Abstract: Aggregate disordered charging of electric vehicles (EV) can adversely affect the safe and stable operation of power systems.Considering the peak shaving demand on the grid side, the charging demand and charging cost of EV users, the minimum critical amount is proposed to limit the feeding of EV to the grid based on the time-of-use tariff. A two-stage orderly charging and discharging control strategy based on the minimum critical power is proposed, and an EV charging and discharging optimization model is established with the goal of minimizing the charging cost of EV users and minimizing the fluctuation of grid load. The genetic algorithm-gray wolf (GA-GWO) was used to optimize the charging and discharging behavior of EV, and the Monte Carlo method was used to simulate the charging demand of 450 EV in a residential area, and the simulation was compared with other charging strategies in different penetration scenarios. The results show that the proposed charging and discharging optimization strategy can reduce the load variance and peak shaving and valley filling, and the optimization effect is more obvious with the increase of the number of electric vehicles participating in the scheduling.
    Key words: electric vehicle; time-of-use tariff; minimum critical power; two-stage orderly charging and discharging; genetic algorithm-gray wolf
 
參考文獻
[1] 郭建龍,文福拴. 電動汽車充電對電力系統(tǒng)的影響及其對策[J]. 電力自動化設(shè)備,2015,35(6) :1-9.
[2] 張夏韋,梁軍,王要強,等. 電動汽車充電負(fù)荷時空分布預(yù)測研究綜述[J] . 電力建設(shè),2023,44(12) :161-173.
[3] 吳晨曦,張杰,張新延,等. 考慮電價影響的電動汽車削峰填谷水平評價[J] . 電力系統(tǒng)保護與控制,2019,47(17) :14-22.
[4] 劉安茳,袁旭峰,李靖. 基于分時電價的小區(qū)電動汽車有序充電策略研究[J] . 貴州大學(xué)學(xué)報(自然科學(xué)版),2017,34(5) :54-58.
[5] 臧漢洲,葉宇劍,湯奕. 基于內(nèi)點策略優(yōu)化的受約束電動汽車充放電策略[J] . 電網(wǎng)技術(shù),2023,47(10) :4170-4179.
[6] 麻秀范,王超,洪瀟,等. 基于實時電價的電動汽車充放電優(yōu)化策略和經(jīng)濟調(diào)度模型[J] . 電工技術(shù)學(xué)報,2016,31(z1) :190-202.
[7] 李東東,段維伊,林順富,等. 實時電價條件下基于用戶引導(dǎo)的電動汽車-充電樁匹配策略[J]. 電力系統(tǒng)自動化,2020,44(8) :74-82.
[8] 蘇海鋒,梁志瑞. 基于峰谷電價的家用電動汽車居民小區(qū)有序充電控制方法[J] . 電力自動化設(shè)備,2015,35(6) :17-22.
[9] 閆志杰,張蕊萍,董海鷹,等. 基于需求響應(yīng)的電動汽車充放電電價與時段研究[J] . 電力系統(tǒng)保護與控制,2018,46(15) :16-22.
[10] 張良,孫成龍,蔡國偉,等. 基于 PSO 算法的電動汽車有序充放電兩階段優(yōu)化策略[J] . 中國電機工程學(xué)報,2022,42(5) :1837-1851.
[11] 閆麗梅,都彬彬,徐建軍. 基于聚類分層的規(guī)?;?span style="font-size: 12px;">動汽車協(xié)調(diào)充電策略[J] . 廣東電力,2022,35(10) :65-73.
[12] 張宇軒,郭力,劉一欣,等. 電動汽車充電負(fù)荷概率分布的數(shù)值建模方法[J] . 電力系統(tǒng)自動化,2021,45(18) :61-70.
[13] 劉利兵,劉天琪,張濤,等. 計及電池動態(tài)損耗的電動汽車有序充放電策略優(yōu)化[J] . 電力系統(tǒng)自動化,2016,40(5) :83-90.