Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

考慮負荷不確定性的微電網(wǎng)多時間尺度調(diào)度策略

來源:電工電氣發(fā)布時間:2024-08-30 14:30瀏覽次數(shù):279

考慮負荷不確定性的微電網(wǎng)多時間尺度調(diào)度策略

徐懂理1,徐北碩1,高瑞陽1,錢俊杰1,王舒揚2
(1 南京工程學(xué)院 電力工程學(xué)院,江蘇 南京 211167;
2 國網(wǎng)浙江省電力有限公司麗水供電公司,浙江 麗水 323000)
 
    摘 要:隨著分布式能源滲透率增高,微電網(wǎng)內(nèi)負荷的不確定性及能源響應(yīng)負荷波動的時間尺度不同為系統(tǒng)靈活調(diào)度帶來了挑戰(zhàn)。電動汽車(EV)因其快速響應(yīng)能力,合理安排其充放電行為可以有效緩解微電網(wǎng)的供電壓力,平滑負荷曲線。在以經(jīng)濟運行最優(yōu)為目標下,提出一種考慮負荷不確定性及電動汽車資源的微電網(wǎng)多時間尺度調(diào)度優(yōu)化模型。在日前調(diào)度階段,結(jié)合需求響應(yīng)技術(shù)以風(fēng)光消納最優(yōu)為目標,優(yōu)化電動汽車資源的充放電行為,確定各種資源調(diào)度安排;在實時調(diào)度階段,負荷預(yù)測出現(xiàn)偏差時,將儲能電池、電動汽車資源作為靈活性資源,實時滾動,對日前調(diào)度計劃做出修正。以某一微電網(wǎng)進行仿真驗證,結(jié)果表明所提模型能實現(xiàn)風(fēng)光全部消納,有效減少負荷曲線的峰谷差,提高其應(yīng)對負荷不確定性的能力。
    關(guān)鍵詞: 電動汽車;微電網(wǎng);需求響應(yīng);多時間尺度;負荷不確定性
    中圖分類號:TM714     文獻標識碼:A     文章編號:1007-3175(2024)08-0008-07
 
Multi-Time Scale Scheduling Strategy of Microgrid
Considering Load Uncertainty
 
XU Dong-li1, XU Bei-shuo1, GAO Rui-yang1, QIAN Jun-jie1, WANG Shu-yang2
(1 School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2 Lishui Power Supply Company of State Grid Zhejiang Electric Power Co., Ltd, Lishui 323000, China)
 
    Abstract: As the permeability of distributed energy increases, the load uncertainty in microgrid and the different time scales of energy response load fluctuation bring challenges to the flexible scheduling of the system. Due to the rapid response ability of electric vehicle (EV),reasonable arrangement of its charge and discharge behavior can effectively alleviate the power supply pressure of microgrid and smooth the load curve. A multi-time scale scheduling optimization model of microgrid considering load uncertainty and EV resources is proposed with the aim of economic operation optimization. In the day-ahead scheduling stage, combined with the demand response technology, the charging and discharging behavior of electric vehicle resources was optimized with the goal of optimizing wind and solar consumption, and various resource scheduling arrangements were determined. In the real-time scheduling stage, when there is a deviation in the load prediction, the energy storage battery and electric vehicle resources are used as flexible resources, which are rolled in real time to make corrections to the dayahead scheduling plan. Finally, the simulation results of a microgrid show that the proposed model can realize the full absorption of wind and scenery, effectively reduce the peak-valley difference of load curve, and improve its ability to cope with load uncertainty.
    Key words: electric vehicle; microgrid; demand response; multi-time scale; load uncertainty
 
參考文獻
[1] RAHBARI-ASR N, ZHANG Y, CHOW M Y.Consensus-based distributed scheduling for cooperative operation of distributed energy resources and storge devices in smart grids[J].IET Generation,Transmission & Distribution,2016,10(5) :1268-1277.
[2] 夏經(jīng)德, 柴莉媛, 楊檬, 等. 市場環(huán)境下新能源優(yōu)化調(diào)度與高效消納的探索[J] . 智慧電力,2019,47(1) :19-25.
[3] 張志文,李華強. 考慮靈活性的孤島微電網(wǎng)群分層能量管理策略[J] . 電力系統(tǒng)保護與控制,2020,48(20) :97-105.
[4] 徐成司,董樹鋒,張舒鵬,等. 面向工業(yè)園區(qū)的集中分布式綜合需求響應(yīng)方法[J] . 電網(wǎng)技術(shù),2021,45(2) :489-497.
[5] 蔣棹駿,向月,談竹奎,等. 計及需求響應(yīng)的高比例清潔能源園區(qū)儲能容量優(yōu)化配置[J] . 中國電力,2023,56(12) : 147-155.
[6] 吳青峰,王毅,于少娟,等. 計及電池儲能單元時間約束的微電網(wǎng)儲荷協(xié)調(diào)控制方案[J] . 太陽能學(xué)報,2023,44(12) :453-462.
[7] 陳勃旭,崔煒,陳宇,等. 分布儲能直流微電網(wǎng)中多儲能荷電均衡控制策略[J] . 電力系統(tǒng)保護與控制,2023,51(24) :111-120.
[8] 潘軍,盧彥杉,何彬彬,等. 計及風(fēng)、光出力不確定性的微電網(wǎng)經(jīng)濟調(diào)度研究[J] . 電工電能新技術(shù),2024,43(2) :56-64.
[9] 李爭,羅曉瑞,徐若思,等. 風(fēng)光-氫儲微電網(wǎng)系統(tǒng)多目標容量優(yōu)化配置[J] . 熱能動力工程,2023,38(4) :131-138.
[10] 趙婷婷,吳剛勇,夏祥武,等. 基于共享儲能容量分配機制的配電網(wǎng)雙層優(yōu)化策略[J]. 水利水電技術(shù)(中英文),2023,54(7) :50-63.
[11] 趙書強,吳楊,李志偉,等. 考慮風(fēng)光出力不確定性的電力系統(tǒng)調(diào)峰能力及經(jīng)濟性分析[J] . 電網(wǎng)技術(shù),2022,46(5) :1752-1760.
[12] 傅曉梅,溫步瀛,朱振山,等. 考慮電池儲能與需求響應(yīng)的微網(wǎng)多時間尺度優(yōu)化運行[J] . 福州大學(xué)學(xué)報(自然科學(xué)版),2021,49(3) :367-375.
[13] 向紅偉,常喜強,呂夢琳,等. 考慮光、儲、燃聯(lián)合發(fā)電的微電網(wǎng)優(yōu)化運行[J] . 哈爾濱理工大學(xué)學(xué)報,2020,25(2) :73-79.
[14] 路紅池,謝開貴,王學(xué)斌,等. 計及多能存儲和綜合需求響應(yīng)的多能源系統(tǒng)可靠性評估[J]. 電力自動化設(shè)備,2019,39(8) :72-78.
[15] LIU J B, ZHUGE C X, TANG J H, et al. A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing[J].Applied Energy, 2022,310 :118581.
[16] LIU H , NIE S L . Low carbon scheduling optimization of flexible integrated energy system considering CVaR and energy effiency[J].Sustainability,2019,11(19) :1-27.
[17] 程杉,汪業(yè)喬,廖瑋霖,等. 含電動汽車的新能源微電網(wǎng)多目標分層優(yōu)化調(diào)度[J] . 電力系統(tǒng)保護與控制,2022,50(12) :63-71.
[18] 潘韋如,魏哲,孫琪,等. 計及電價優(yōu)化的電動汽車與風(fēng)電協(xié)同優(yōu)化策略[J]. 電工電氣,2023(6) :14-21.
[19] 周建力,烏云娜,董昊鑫,等. 計及電動汽車隨機充電的風(fēng)-光-氫綜合能源系統(tǒng)優(yōu)化規(guī)劃[J]. 電力系統(tǒng)自動化,2021,45(24) :30-40.
[20] 趙佳,孟潤泉,魏斌,等. 計及電動汽車用戶需求的直流微電網(wǎng)經(jīng)濟調(diào)度策略[J] . 電力建設(shè),2021,42(7) :39-47.
[21] 崔楊,張家瑞,王錚,等. 計及價格型需求響應(yīng)的風(fēng)-光-光熱聯(lián)合發(fā)電系統(tǒng)日前調(diào)度策略[J]. 中國電機工程學(xué)報,2020,40(10) :3103-3113.